## **Material für Lehrkraft**

# **James Webb Weltraumteleskop**





# **James Webb Weltraumteleskop**

## Gestaltung des Primärspiegels

#### Kurzbeschreibung

Diese Aktivität beschäftigt sich mit dem Primärspiegel des James Webb Weltraumteleskops. Es soll herausgefunden werden, warum genau seine Größe und Form für das Design ausgewählt wurden. Die Kinder untersuchen die Rotationssymmetrie regelmäßiger Sechsecke und erforschen, warum Sechsecke anstelle anderer regelmäßiger Formen für den Spiegel gewählt wurden.

#### **Eckdaten**

Fach: Physik, Astronomie, Mathematik

Jahrgangsstufe: ab 5. Klasse
Typ: Diskussion, aktive Teilnahme

**Schwierigkeitsgrad:** Mittel **Zeitaufwand:** ca. 90 Minuten

Kosten: niedrig

Ort: Klassenraum, ggf. draußen

Materialien: Weiche Bälle, ein kleiner Regenschirm, ein großer Golf-Regenschirm, Arbeitsblätter für

Aktivität 2

Schlüsselwörter: Physik, Astronomie, Teleskope, James-Webb, Weltraumteleskope,

Herausforderungen bei der Gestaltung von technischen Produkten

#### Lernziele

Die Schüler\*innen lernen die verschiedenen Arten von Teleskopen kennen, einschließlich ihrer spezifischen Designs, wie zum Beispiel Linsen- und Spiegelteleskope. Anhand vorgefertigter Skizzen können sie Strahlengänge einzeichnen und erhalten so Einblick in das Innere eines Teleskops. Auch sollen sie die verschiedenen Vor- und Nachteile verschiedener Teleskop-Technologien vergleichen und verstehen, was Weltraumteleskope für eine Bedeutung haben. Aus mathematischer Sicht lernen die Schüler\*innen ordentlich und genau zu arbeiten, sowie einfache Bruchrechnungen zu lösen. Dadurch wird ihnen auch gezeigt, was das Auflösungsvermögen eines Teleskops bedeutet und was Weltraumteleskope für Details wahrnehmen können.

Die Schüler\*innen sollen ebenfalls lernen, ihre Ergebnisse zu präsentieren und untereinander zu diskutieren.

## Zusammenfassung der Aufgaben

| Aktivität | Titel                   | Beschreibung           | Ergebnis            | Voraussetzung     | Dauer         |
|-----------|-------------------------|------------------------|---------------------|-------------------|---------------|
| 1         | Anschauliche Erklärung  | Die Schüler*innen      | Die Schüler*innen   | Keine             | 20-30 Minuten |
|           |                         | sollen anhand der      | lernen, anhand von  |                   |               |
|           |                         | Abbildungen            | Abbildungen         |                   |               |
|           |                         | Unterschiede zwischen  | offensichtliche     |                   |               |
|           |                         | den Designs des        | Unterschiede        |                   |               |
|           |                         | Hubble bzw. James      | zwischen den        |                   |               |
|           |                         | Webb                   | Konstruktionen      |                   |               |
|           |                         | Weltraumteleskopes     | festzustellen. Sie  |                   |               |
|           |                         | erkennen. Außerdem     | lernen die          |                   |               |
|           |                         | soll auf spielerische  | Funktionsweise von  |                   |               |
|           |                         | Weise der              | Teleskopen auf      |                   |               |
|           |                         | Messvorgang des        | kreative Art kennen |                   |               |
|           |                         | Teleskopes erkundet    | und entwickeln      |                   |               |
|           |                         | werden.                | Vorstellungen für   |                   |               |
|           |                         |                        | wichtige Aspekte    |                   |               |
|           |                         |                        | beim Spiegeldesign. |                   |               |
| 2         | Bedeutung der Sechsecke | Die Schüler*innen      | Die Schüler*innen   | Korrekter Umgang  | 30-50 Minuten |
|           |                         | lernen die Bedeutung   | erkunden die        | mit Geodreieck o. |               |
|           |                         | rotationssymmetrischer | Schwierigkeiten und | Lineal            |               |
|           |                         | Formen am Beispiel     | Herausforderungen   |                   |               |
|           |                         | von Sechsecken         | beim Design von     |                   |               |
|           |                         | kennen. Außerdem       | Weltraumteleskopen. |                   |               |
|           |                         | stellen sie            |                     |                   |               |
|           |                         | Überlegungen zur       |                     |                   |               |
|           |                         | Bedeutung für das      |                     |                   |               |
|           |                         | Teleskopdesign an.     |                     |                   |               |

## Einführung und Grundlagen

Der Primärspiegel des James-Webb-Weltraumteleskops ist nicht kreisförmig wie der des Hubble -Weltraumteleskops. Das James-Webb-Weltraumteleskop musste viel größer gebaut werden als das Hubble-Weltraumteleskop, damit es weiter in den Weltraum sehen kann. Wäre es baugleich mit Hubble, wäre es somit zu schwer, um es in die Umlaufbahn zu bringen. Das Webb-Team musste daher neue Wege finden, um den Spiegel so zu bauen, dass er groß und leistungsfähig ist. Andererseits musste das Teleskop auch leicht sein und in eine Rakete passen, um ins Weltall gebracht zu werden. Um diese Probleme zu lösen, entwickelte das Team einen Spiegel, der aus 18 Sechsecken besteht, die aus dem Leichtmetall Beryllium gefertigt und mit Gold beschichtet sind. Dies reflektiert sehr stark, insbesondere im Infrarotbereich. Der Spiegel hat einen Durchmesser von über 6,5 m und ist damit zu groß, um während des Starts in die Rakete zu passen. Deshalb ist er auf einem faltbaren Gestell montiert, so dass er für den Transport ins All zusammengeklappt werden konnte. Die Struktur entfaltete sich bei Annäherung zu ihrem Ziel.

Die 18 regelmäßigen Sechsecke, aus denen der Hauptspiegel besteht, sind so angeordnet, dass es 3 Sätze von 6 Sechsecken gibt, die im gleichen Abstand vom Zentrum der Spiegelstruktur angeordnet sind. Kacheln, die sich in einem bestimmten Abstand von der Mitte des Spiegels befinden, werden mit genau denselben optischen Eigenschaften hergestellt.




Abbildung 1: Das James Webb Weltraumteleskop

## Aktivität 1 – Anschauliche Erklärung

Diese Aktivität lässt sich bestenfalls in einer Halle oder draußen durchführen, ist aber auch für den Klassenraum geeignet. Die Klasse wird in zwei Gruppen aufgeteilt, von denen jede jeweils einen großen und einen kleinen Regenschirm sowie einige weiche Bälle erhält. Erklären Sie ihnen, dass die Bälle das Infrarotlicht darstellen, das von Sternen und Planeten abgegeben wird, und dass der kleine Schirm den Hubble-Spiegel und der große den Webb-Spiegel darstellt.

Die Schüler\*innen sollen herausfinden, welcher Spiegel bei unterschiedlichen Entfernungen das meiste Infrarotlicht auffängt. Dabei kann der Regenschirm verkehrt herum und in Richtung der anderen Schüler\*innen gehalten werden, während diese in der Mitte des Klassenzimmers stehen und die Bälle in Richtung des Regenschirms werfen. Der Regenschirm muss dabei relativ ruhig gehalten werden. Wenn alle Bälle geworfen worden sind, wird gezählt, wie viele im Schirm gelandet sind. Wiederholen Sie dies mit dem großen Regenschirm und schauen Sie, welcher mehr Bälle auffängt. Bitten Sie dann die Schüler\*innen, sich in den hinteren Teil des Klassenzimmers zu stellen und die Übung mit jedem der Regenschirme zu wiederholen.

#### **Material**

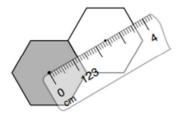
Großer & kleiner Regenschirm, Weiche Bälle

**Sicherheitshinweis:** Seien Sie vorsichtig mit den Öffnungsmechanismen der Schirme und achten Sie darauf, dass die Kinder still stehen, wenn sie diese aufspannen.

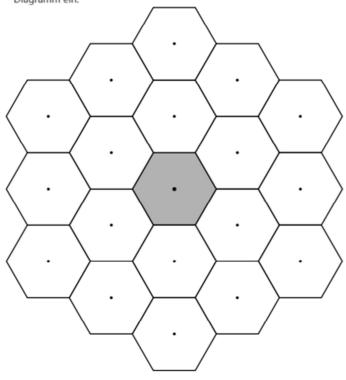
#### **Aufgabe**

- a) Gibt es Unterschiede? Welcher Schirm sammelt die meisten Bälle aus kurzer Entfernung? Welcher Schirm sammelt die meisten Bälle aus größerer Entfernung ein?
- b) Welcher Schirm/Spiegel fängt die meisten Bälle/Infrarotlicht auf, wenn sie aus größerer Entfernung geworfen werden? Wenn wir ein Teleskop entwerfen würden, das Licht aus sehr großer Entfernung auffängt, würden wir dann einen großen oder einen kleinen Spiegel wollen?
- c) Warum ist der Spiegel nicht noch größer ist? Hat es mit dem Rest der Struktur zu tun? Wäre es möglich, einen noch größeren Spiegel ins All zu schicken?

## **Aufgabe – Ergebnis**


- a) Der große Schirm sammelt bei allen Entfernungen i.A. mehr Bälle ein.
- b) Das Webb-Teleskop hat einen viel größeren Spiegel, weil es so konstruiert ist, dass es sehr weit in den Weltraum schauen kann, über 13 Milliarden Lichtjahre von uns entfernt. Wie viele Details ein Teleskop sehen kann, hängt von der Größe des Spiegels ab, der das Licht von den Objekten auffängt. Eine größere Fläche fängt mehr Licht auf, so wie ein größerer Regenschirm mehr Bälle auffängt als ein kleiner.
- c) Je schwerer der Spiegel, umso schwieriger gestaltet sich der Transport ins Weltall.

## Aktivität 2 – Bedeutung der Sechsecke


Im Zuge dieser Aktivität werden die Schüler\*innen die Rotationssymmetrie regelmäßiger Sechsecke kennenlernen und erforschen. Der korrekte Umgang mit dem Geodreieck ist erforderlich.

#### **Material**

Schreibmaterial, Lineal o. Geodreieck

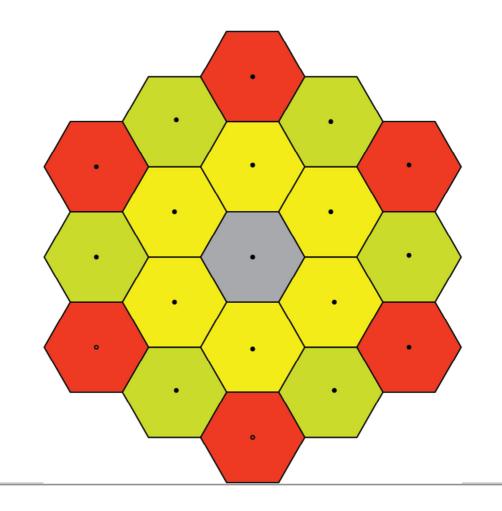


Trage die Abstände in das Diagramm ein.



## **Aufgabe**

a) Sieh dir das Bild oben an. Aus welchen Formen ist der Spiegel gemacht? Wie wird diese Anordnung der Formen, wenn sie genau zusammenpassen und keine Lücken lassen, genannt?


- b) Sieh dir das Muster des Primärspiegels an. Versuche, den Abstand vom Mittelpunkt des Spiegels zum Mittelpunkt eines Sechseckes zu messen.
- c) Führe diese Messung für jedes Sechseck durch und male dann die Sechsecke mit gleichem Abstand zur Mitte in der gleichen Farbe an. Was für Muster entstehen?

## **Aufgabe – Ergebnis**

a) Der Spiegel besteht aus einer Anordnung von Sechsecken. Wenn solch ein Muster lückenlos angeordnet ist, wird es Mosaik genannt.

b)

c)



## Links

#### **ESA** Ressourcen

ESA Klassenzimmer Ressourcen: <u>www.esero.de</u>

ESA Kids Webseite: <a href="https://www.esa.int/kids">www.esa.int/kids</a>

## **ESA Weltraumprojekte**

Hubble-Weltraumteleskop: <a href="https://esahubble.org">https://esahubble.org</a>

James Webb Weltraumteleskop: https://esawebb.org

## Quellen

Abbildung 1: https://commons.wikimedia.org/wiki/File:James Webb Space Telescope 2009 top.jpg

**COPYRIGHT © ESERO GERMANY (CC BY-NC-ND 2.0 DE)**